报告题目:Parameter estimation for the complex fractional Ornstein–Uhlenbeck processes with Hurst parameter
报告摘要:We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein-Uhlenbeck processes driven by fractional Brownian motion, extending the results of Chen et al. (2017) to the case of Hurst parameter and the results of Hu et al. (2019) to a two-dimensional case. When , it is found that the integrand of the estimator is not in the domain of the standard divergence operator. To facilitate the proofs, we develop a new inner product formula for functions of bounded variation in the reproducing kernel Hilbert space of fractional Brownian motion with Hurst parameter . This formula is also applied to obtain the second moments of the so-called -order fractional Brownian motion and the -fractional bridges with the Hurst parameter .
报告人简介:陈勇,副教授,硕士生导师,保山学院大数据学院学术副院长。本科毕业于中国海洋大学(1998),硕士及博士毕业于北京大学(2001,2006),曾国家公派访问美国堪萨斯大学数学系。主要从事随机过程,随机分析及其应用的研究工作。在 Stoch. Process Their Appl. ,Journal of theoretical probability,Journal of Applied Probability,Journal of Statistical Planning and Inference,Journal of Mathematical Physics,Chaos, Solitons & Fractals,Kyoto Journal of Mathematics,Infin. Dimens. Anal. Quantum. Probab. Relat. Top.,ALEA Lat. Am. J. Probab. Math. Stat. 等数学和概率统计主流期刊上发表学术论文36篇。主持国家自然科学基金青年基金一项(2012-2014),地区基金两项(2019-2023,2025-2028)。
报告时间:2024年12月5日10:30-12:00
报告地点:同析4号楼322会议室