姓 名:顾光泽
职 称:副教授
人才称号:云南省兴滇英才——青年学者
工作单位:云南师范大学数学学院
电子邮箱:guangzegu@163.com
研究方向及招生情况
l 研究领域:非线性椭圆偏微分方程
l 招生专业:非线性椭圆偏微分方程(硕士)
工作经历
n 2021.03——至今,云南师范大学,讲师
教育经历
u 2018.09——2020.09,University of Texas at San Antonio,联合培养博士生
u 2017.09——2020.12,中南大学,应用数学,博士
u 2014.09——2017.06,云南师范大学,基础数学,硕士
u 2010.09——2014.06,云南师范大学,数学与应用数学,本科
科研项目
v 2023.06—2026.06,非局部Kirchhoff型方程解的存在性和多重性及相关问题的研究,云南省应用基础研究计划青年项目(202301AU070159),5万,主持
v 2022.01—2024.12,紧流形上平均场方程解的唯一性和对称性及相关问题研究,国家自然科学基金青年项目(12261107),30万,主持
著作论文
1. Gu, Guangze; Yu, Yuanyang; Zhao, Fukun The least energy sign-changing solution for a nonlocal problem. J. Math. Phys. 58 (2017), no. 5, 051505, 11 pp.
2. Gu, Guangze; Zhang, Wei; Zhao, Fukun Infinitely many positive solutions for a nonlocal problem. Appl. Math. Lett. 84 (2018), 49–55.
3. Gu, Guangze; Zhang, Wei; Zhao, Fukun Infinitely many sign-changing solutions for a nonlocal problem. Ann. Mat. Pura Appl. (4) 197 (2018), no. 5, 1429–1444.
4. Gu, Guangze; Tang, Xianhua; Zhang, Youpei Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Commun. Pure Appl. Anal. 18 (2019), no. 6, 3181–3200.
5. Gu, Guangze; Tang, Xianhua The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. Adv. Nonlinear Stud. 19 (2019), no. 4, 779–795.
6. Gu, Guangze; Tang, Xianhua; Zhang, Youpei Existence of positive solutions for a class of critical fractional Schrödinger-Poisson system with potential vanishing at infinity. Appl. Math. Lett. 99 (2020), 105984, 7 pp.
7. Yang, Xianyong; Tang, Xianhua; Gu, Guangze Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math. Methods Appl. Sci. 43 (2020), no. 6, 3569–3585.
8. Yang, Xianyong; Tang, Xianhua; Gu, Guangze Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Var. Elliptic Equ. 65 (2020), no. 9, 1515–1547.
9. Gu, Guangze; Tang, Xianhua; Shen, Jianxia Multiple solutions for fractional Schrödinger-Poisson system with critical or supercritical nonlinearity. Appl. Math. Lett. 111 (2021), Paper No. 106605, 7 pp.
10. Gu, Guangze; Tang, Xianhua; Yang, Xianyong Existence of positive solutions for a critical fractional Kirchhoff equation with potential vanishing at infinity. Math. Nachr. 294 (2021), no. 4, 717–730.
11. Yang, Xianyong; Tang, Xianhua; Gu, Guangze Existence and multiplicity of solutions for a fractional Choquard equation with critical or supercritical growth. (Chinese) Acta Math. Sci. Ser. A (Chinese Ed.) 41 (2021), no. 3, 702–722.
12. Wu, Ke; Zhou, Fen; Gu, Guangze Some remarks on uniqueness of positive solutions to Kirchhoff type equations. Appl. Math. Lett. 124 (2022), Paper No. 107642, 4 pp.
13. Gu, Guangze; Yang, Zhipeng Positive eigenfunctions of a class of fractional Schrödinger operator with a potential well. Differential Integral Equations 35 (2022), no. 1-2, 123–150.
14. Wu, Ke; Gu, Guangze Existence of positive solutions for fractional Kirchhoff equation. Z. Angew. Math. Phys. 73 (2022), no. 2, Paper No. 45, 13 pp.
15. Gu, Guangze; Yang, Zhipeng On the singularly perturbation fractional Kirchhoff equations: critical case. Adv. Nonlinear Anal. 11 (2022), no. 1, 1097–1116.
16. Gu, Guangze; Yang, Xianyong; Yang, Zhipeng Infinitely many sign-changing solutions for nonlinear fractional Kirchhoff equations. Appl. Anal. 101 (2022), no. 16, 5850–5871.
17. Gu, Guangze; Mu, Changyang; Yang, Zhipeng Existence and multiplicity of solutions for a fractional Schrödinger-Poisson system with subcritical or critical growth. Qual. Theory Dyn. Syst. 22 (2023), no. 2, Paper No. 63, 39 pp.