您当前所在的位置: 首页 -> 师资队伍 -> 副教授 -> 正文

杨云波

发布日期:2023-11-15  来源:   点击量:

姓 名:杨云波

职 称:副教授

职 务:教师

人才称号:云南省兴滇英才——青年学者

工作单位:云南师范大学数学学院

电子邮箱:ybyang13@126.com

研究方向及招生情况

研究领域:偏微分方程数值解;有限元方法及其应用;复杂耦合流体方程的新型高效数值方法;并行算法等

招生专业:计算数学

工作经历

2018.09—至今,云南师范大学

教育经历

2013.09-2018.03,西安交通大学,数学,博士

2010.09-2013.07,云南师范大学,应用数学,硕士

2006.09-2010.07,云南师范大学,数学与应用数学,本科

学术兼职

期刊审稿人: Journal of scientific computing, Computers & mathematics with applications, Journal of computational and applied mathematics, IMA Journal of Numerical Analysis,Numerical Methods for Partial Differential Equations等

科研项目

2026.01.01-2029.12,国家自然科学基金地区项目,12561077,在研,主持,27万;

2022.01-2025.12,国家自然科学基金地区项目12161095, 主持, 在研, 35万;

2022.06-2025.05,云南省科技厅基础研究专项--面上项目202101AT070106,主持,在研,10万;

2020.06-2023.05云南省科技厅基础研究专项--青年项目202001AU070068 ,主持,在研,5万;

2019.06-2020.05云南省教育厅基金2019J0076,主持,已结题,2万;

2019.01-2022.12国家自然科学基金面上项目11871393, 参与,已结题;

2022.01-2025.12国家自然科学基金地区项目12162032,参与,在研;

论文

[1] Y. Chen, Y. B. Yang*, L. Mei. A family of second-order time step methods for a nonlinear fluid-fluid interaction model. Computers & Mathematics with Applications. 2025 Mar 15;182:1-23.

[2] Y. B. Yang, Y. Xia, Two-grid penalty Arrow-Hurwicz iterative finite element methods for the stationary magnetohydrodynamics flow, Applications of Mathematics, 70, 611–646  (2025)

[3] Y. B. Yang, Y. Xia, A projection method with modular Grad‐Div stabilization for inductionless magnetohydrodynamic equations based on charge conservation, Mathematical Methods in the Applied Sciences, 2025.

[4] Y. Xia, Y. B. Yang*, Error correction iterative finite element method based on charge-conservative for the stationary inductionless magnetohydrodynamic system. Z Angew Math Mech. 105, e70057 (2025).

[5] Y. Xia; Y. B. Yang*; An efficient two-grid algorithm based on Newton iteration for the stationary inductionless magnetohydrodynamic system, Applied Numerical Mathematics, 2025, 212: 312-332

[6] Y. B. Yang*; Unconditional optimal first-order error estimates of a full pressure segregation scheme for the magnetohydrodynamics equations, Numerical Methods for Partial Differential Equations, 2024, 40(5): e23098

[7] Y. Xia; Y. B. Yang*; An Arrow-Hurwicz iterative method based on charge-conservation for the stationary inductionless magnetohydrodynamic system, Numerical Algorithms, 2025, 98(2): 1045-1084

[8] Y. Chen, Y. B. Yang*, Lijie Mei. An artificial compressibility SAV finite element method for the time-dependent natural convection problem.Numerical Heat Transfer, Part B: Fundamentals, 2024.

[9] Y. Chen, Y. B. Yang*, Numerical Analysis of a Second-Order Algorithm for the Time-Dependent Natural Convection Problem, Computational Methods in Applied Mathematics, 2024.

[10] Y. B. Yang, Error estimates of a two-grid penalty finite element method for the Smagorinsky model, Math. Meth. Appl. Sci. 46 (17) , pp.18473-18495, 2023.

[11] Y. B. Yang, B.C. Huang and Y.L. Jiang, Error estimates of an operator-splitting finite element method for the time-dependent natural convection problem, Numerical Methods for Partial Differential Equations 39(3): 2202-2226,2023.

[12] Y. B. Yang and Y. L. Jiang, Optimal error estimates of a lowest-order Galerkin-mixed FEM for the thermoviscoelastic Joule heating equations, Applied Numerical Mathematics, Vol. 183, pp. 86--107, 2023.

[13] Y. B. Yang, Y. L. Jiang and B. H. Yu. Unconditional Optimal Error Estimates of Linearized, Decoupled and Conservative Galerkin FEMs for the Klein-Gordon-Schrödinger Equation. J Sci Comput 87, 89 (2021).

[14] Y. B. Yang and Y. L. Jiang, Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrodinger-Helmholtz equations, Numerical Algorithms, 2021, 86: 1495-1522.

[15] Y. B. Yang and Y. L. Jiang, Unconditional optimal error estimates of linearized second-order BDF Galerkin FEMs for the Landau-Lifshitz equation, Applied Numerical Mathematics, 2021, 159: 21-45.

[16] Y.B. Yang and Y.L. Jiang, Error correction iterative method for the stationary magnetohydrodynamics flow, Mathematical Methods in the Applied Sciences, 2020, 43(2): 750-768.

[17] Y. B. Yang, Y. L. Jiang and Q. X. Kong, Two-grid stabilized FEMs based on Newton type linearization for the steady-state natural convection problem, Advances in Applied Mathematics and Mechanics, 2020, 12(2), 407-435.

[18] Y. B. Yang, Y. L. Jiang and Q. X. Kong, A higher-order pressure segregation scheme for the time-dependent magnetohydrodynamics equations, Applications of Mathematics, 2019, 64( 5): 531-556.

[19] Y. B. Yang, Y. L. Jiang and Q. X. Kong, The Arrow-Hurwicz iterative finite element method for the stationary magnetohydrodynamics flow, Applied Mathematics and Computation, 2019, 356: 347-361.

[20] Y. B. Yang and Y. L. Jiang, An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection, Numerical Algorithms, 2018, 78(2): 569-597.

[21] Y. B. Yang and Y. L. Jiang, Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure, International Journal of Computer Mathematics, 2018, 95(4): 686-709.

[22] Y. L. Jiang and Y. B. Yang, Analysis of some projection methods for the incompressible fluids with microstructure, Journal of the Korean Mathematical Society, 2018, 55(2): 471-506.

[23] Y. L. Jiang and Y. B. Yang , Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model, Computational Methods in Applied Mathematics, 2018, 18(2): 275-296.

[24] Y. B. Yang and Q. X. Kong, A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations, Applications of Mathematics, 2017, 62(1): 75-100.

[25] Y. B. Yang and Y. L. Jiang, Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem, Computational Methods in Applied Mathematics, 2016, 16(2): 321-344.

[26] Q. X. Kong and Y. B. Yang*, A new two grid variational multiscale method for steady-state natural convection problem, Mathematical Methods in the Applied Sciences, 2016, 39(14):4007–4024.

[27] Z. Miao, Y. L. Jiang and Y. B. Yang, Convergence analysis of a parareal-in-time algorithm for the incompressible non-isothermal flows, International Journal of Computer Mathematics, 2019, 96 (7): 1398-1415.

上一条:杨志鹏

下一条:杨映霞