
姓 名:顾光泽
职 称:副教授
人才称号:云南省兴滇英才——青年学者
工作单位:云南师范大学数学学院
电子邮箱:guangzegu@163.com
研究方向及招生情况
研究领域:非线性椭圆偏微分方程
招生专业:偏微分方程(硕士)
教育经历
2018.09——2020.09,University of Texas at San Antonio,联合培养博士研究生
2017.09——2020.12,中南大学,应用数学,博士
2014.09——2017.06,云南师范大学,基础数学,硕士
2010.09——2014.06,云南师范大学,数学与应用数学,本科
学术兼职
中国数学会会员、中国工业与应用数学学会会员
美国数学评论论员
科研项目
(1)2023.06—2026.05,非局部Kirchhoff型方程解的存在性和多重性及相关问题的研究,云南省基础研究青年项目,主持.
(2)2022.01—2024.12,紧流形上平均场方程解的唯一性和对称性及相关问题研究,国家自然科学基金青年项目,主持.
(3)2023.01—2026.12,两类强不定变分问题解的存在性及相关问题研究,国家自然科学基金地区项目,参与.
(4)2020.01—2023.12,具变分结构的几类数学物理方程驻波解动力学性态研究的非经典方法,国家自然科学基金面上项目,参与.
(5)2019.01—2021.12,Maxwell方程组非平凡解的存在性与动力学分析,国家自然科学基金青年项目,参与.
论文
1. Gu, Guangze; Yu, Yuanyang; Zhao, Fukun The least energy sign-changing solution for a nonlocal problem. J. Math. Phys. 58 (2017), no. 5, 051505, 11 pp.
2. Gu, Guangze; Zhang, Wei; Zhao, Fukun Infinitely many positive solutions for a nonlocal problem. Appl. Math. Lett. 84 (2018), 49–55.
3. Gu, Guangze; Zhang, Wei; Zhao, Fukun Infinitely many sign-changing solutions for a nonlocal problem. Ann. Mat. Pura Appl. (4) 197 (2018), no. 5, 1429–1444.
4. Gu, Guangze; Tang, Xianhua; Zhang, Youpei Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Commun. Pure Appl. Anal. 18 (2019), no. 6, 3181–3200.
5. Gu, Guangze; Tang, Xianhua The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. Adv. Nonlinear Stud. 19 (2019), no. 4, 779–795.
6. Gu, Guangze; Tang, Xianhua; Zhang, Youpei Existence of positive solutions for a class of critical fractional Schrödinger-Poisson system with potential vanishing at infinity. Appl. Math. Lett. 99 (2020), 105984, 7 pp.
7. Yang, Xianyong; Tang, Xianhua; Gu, Guangze Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math. Methods Appl. Sci. 43 (2020), no. 6, 3569–3585.
8. Yang, Xianyong; Tang, Xianhua; Gu, Guangze Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Var. Elliptic Equ. 65 (2020), no. 9, 1515–1547.
9. Gu, Guangze; Tang, Xianhua; Shen, Jianxia Multiple solutions for fractional Schrödinger-Poisson system with critical or supercritical nonlinearity. Appl. Math. Lett. 111 (2021), Paper No. 106605, 7 pp.
10. Gu, Guangze; Tang, Xianhua; Yang, Xianyong Existence of positive solutions for a critical fractional Kirchhoff equation with potential vanishing at infinity. Math. Nachr. 294 (2021), no. 4, 717–730.
11. Yang, Xianyong; Tang, Xianhua; Gu, Guangze Existence and multiplicity of solutions for a fractional Choquard equation with critical or supercritical growth. (Chinese) Acta Math. Sci. Ser. A (Chinese Ed.) 41 (2021), no. 3, 702–722.
12. Gu, Guangze; Gui, Changfeng; Hu, Yeyao; Li, Qinfeng Uniqueness and symmetry for the mean field equation on arbitrary flat tori. Int. Math. Res. Not. IMRN 2021, no. 24, 18812–18827.
13. Wu, Ke; Zhou, Fen; Gu, Guangze Some remarks on uniqueness of positive solutions to Kirchhoff type equations. Appl. Math. Lett. 124 (2022), Paper No. 107642, 4 pp.
14 Gu, Guangze; Yang, Zhipeng Positive eigenfunctions of a class of fractional Schrödinger operator with a potential well. Differential Integral Equations 35 (2022), no. 1-2, 123–150.
15. Wu, Ke; Gu, Guangze Existence of positive solutions for fractional Kirchhoff equation. Z. Angew. Math. Phys. 73 (2022), no. 2, Paper No. 45, 13 pp.
16. Gu, Guangze; Yang, Zhipeng On the singularly perturbation fractional Kirchhoff equations: critical case. Adv. Nonlinear Anal. 11 (2022), no. 1, 1097–1116.
17. Gu, Guangze; Yang, Xianyong; Yang, Zhipeng Infinitely many sign-changing solutions for nonlinear fractional Kirchhoff equations. Appl. Anal. 101 (2022), no. 16, 5850–5871.
18. Gu, Guangze; Mu, Changyang; Yang, Zhipeng Existence and multiplicity of solutions for a fractional Schrödinger-Poisson system with subcritical or critical growth. Qual. Theory Dyn. Syst. 22 (2023), no. 2, Paper No. 63, 39 pp.
19.Gu, Guangze; Zhang, Xu; Zhao, Fukun A compact embedding result and its applications to a nonlocal Schrödinger equation. Math. Nachr. 297 (2024), no. 2, 707–715.
20. Zeng, Anbiao; Gu, Guangze Infinitely many negative energy solutions for fractional Schrödinger-Poisson systems. Appl. Math. Lett. 162 (2025), Paper No. 109389, 6 pp.
21.Siyu,Dai;Shaoxiong,Chen;Guangze,GuInfinitely many sign-changing solutions for a kind of planar Choquard equation with critical exponential growth. Complex Var. Elliptic Equ. Doi:10.1080/17476933.2025.2469680