
姓 名:杨云波
职 称:副教授
职 务:教师
人才称号:云南省兴滇英才——青年学者
工作单位:云南师范大学数学学院计算数学系
电子邮箱:ybyang13@126.com
研究方向及招生情况
研究领域:偏微分方程数值解;有限元方法及其应用;复杂耦合流体方程的新型高效数值方法;并行算法等
招生专业:计算(应用)数学
教育经历
2013.09-2018.03,西安交通大学,数学,博士
2010.09-2013.07,云南师范大学,应用数学,硕士
2006.09-2010.07,云南师范大学,数学与应用数学,本科
学术兼职
期刊审稿人:Journal of scientific computing, Computers & mathematics with applications,Journal of computational and applied mathematics,IMA Journal of Numerical Analysis,Numerical Methods for Partial Differential Equations等
科研项目
2022.01-2025.12,国家自然科学基金地区项目12161095,主持,在研, 35万;
2022.06-2025.05,云南省科技厅基础研究专项--面上项目202101AT070106,主持,在研,10万;
2020.06-2023.05云南省科技厅基础研究专项--青年项目202001AU070068,主持,在研,5万;
2019.06-2020.05云南省教育厅基金2019J0076,主持,已结题,2万;
2019.01-2022.12国家自然科学基金面上项目11871393,参与,已结题;
2022.01-2025.12国家自然科学基金地区项目12162032,参与,在研;
论文
[1]Chen Y,Yang YB*, Mei L. A family of second-order time step methods for a nonlinear fluid-fluid interaction model. Computers & Mathematics with Applications. 2025 Mar 15;182:1-23.
[2]Yande Xia,Yun-Bo Yang*.An Arrow-Hurwicz iterative method based on charge-conservation for the stationary inductionless magnetohydrodynamic system,Numerical Algorithms, 2024.
[3]Yun-Bo Yang*,Yao-Lin Jiang,Unconditional optimal first‐order error estimates of a full pressure segregation scheme for the magnetohydrodynamics equations,Numerical Methods for Partial Differential Equations,2024,e23098.
[4]Yiru Chen,Yun-Bo Yang*, Lijie Mei. An artificial compressibility SAV finite element method for the time-dependent natural convection problem.Numerical Heat Transfer, Part B: Fundamentals, 2024.
[5]Yiru Chen,Yun-Bo Yang*,Numerical Analysis of a Second-Order Algorithm for the Time-Dependent Natural Convection Problem,Computational Methods in Applied Mathematics,2024.
[6]Y. B. Yang, Errorestimatesofatwo-gridpenaltyfiniteelementmethodfortheSmagorinskymodel, Math. Meth. Appl. Sci. 46 (17) , pp.18473-18495, 2023.
[7]Y. B. Yang, B.C.Huang andY.L.Jiang, Error estimates of anoperator-splitting finite elementmethod for the time-dependent natural convection problem, Numerical Methods for Partial Differential Equations 39(3): 2202-2226,2023.
[8]Y. B. Yangand Y. L. Jiang,Optimal error estimates of a lowest-order Galerkin-mixed FEM for the thermoviscoelastic Joule heating equations, Applied Numerical Mathematics, Vol. 183, pp. 86--107, 2023.
[9]Y.B.Yang,Y. L. Jiang andB.H.Yu. Unconditional Optimal Error Estimates of Linearized, Decoupled and Conservative Galerkin FEMs for the Klein-Gordon-Schrödinger Equation.J Sci Comput 87, 89 (2021).
[10]Y. B. Yangand Y. L. Jiang, Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrodinger-Helmholtz equations, Numerical Algorithms,2021, 86: 1495-1522.
[11]Y. B. Yangand Y. L. Jiang, Unconditional optimal error estimates of linearized second-order BDF Galerkin FEMs for the Landau-Lifshitz equation, Applied Numerical Mathematics,2021,159:21-45.
[12]Y.B. YangandY.L. Jiang, Error correction iterativemethod for the stationary magnetohydrodynamics flow,Mathematical Methods in the Applied Sciences,2020, 43(2): 750-768.
[13]Y.B.Yang,Y. L. Jiang and Q. X. Kong, Two-grid stabilized FEMs basedon Newton type linearization for the steady-state natural convection problem,Advances in Applied Mathematics and Mechanics,2020, 12(2), 407-435.
[14]Y.B.Yang,Y. L. Jiang and Q. X. Kong, Ahigher-order pressure segregationscheme for the time-dependent magnetohydrodynamics equations,Applications of Mathematics, 2019, 64( 5): 531-556.
[15]Y.B.Yang,Y. L. Jiang and Q. X. Kong, The Arrow-Hurwicz iterative finite element method for the stationary magnetohydrodynamics flow, Applied Mathematics and Computation, 2019,356: 347-361.
[16]Y. B. Yangand Y. L. Jiang, An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection, Numerical Algorithms, 2018, 78(2): 569-597.
[17]Y. B. Yangand Y. L. Jiang, Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure, International Journal of Computer Mathematics, 2018, 95(4): 686-709.
[18]Y. L. Jiang andY. B. Yang, Analysis of some projection methods for the incompressible fluids with microstructure, Journal of the Korean Mathematical Society, 2018, 55(2): 471-506.
[19]Y. L. Jiang andY. B. Yang, Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model, Computational Methods in Applied Mathematics, 2018, 18(2): 275-296.
[20]Y. B. Yangand Q. X. Kong, A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations, Applications of Mathematics, 2017, 62(1): 75-100.
[21]Y. B. Yangand Y. L. Jiang, Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem, Computational Methods in Applied Mathematics, 2016, 16(2): 321-344.
[22]Q. X. Kong andY. B. Yang,A new two grid variational multiscale method for steady-state natural convection problem, Mathematical Methods in the Applied Sciences, 2016, 39(14):4007–4024.
[23]Z. Miao, Y. L. Jiang andY. B. Yang, Convergence analysis of a parareal-in-time algorithm for the incompressible non-isothermal flows, International Journal of Computer Mathematics, 2019, 96 (7): 1398-1415.